Analysis and Uncertainty Plan:

1) Step 1 should be the Problem statement and project goals/objectives:

Example: Develop a site-specific selenium water column criterion that protects all aquatic life in Lake Koocanusa.

1. Background – What is an analysis plan in the context of ecological risk assessment and how is it being used here in the context of WQC/WQO development for Lake Koocanusa?

Characterization of Lake Koocanusa Watershed:

General Lake Characteristics

- Lake Map with general statistics width + depth @ seasonal hydrology, other stats?
- Discussion on how the reservoir might be divided for selenium modeling purposes.

Watershed Characteristics

- Lake Tributaries (if notable)
- Downstream Kootenai
 - available information and data (e.g., recent fish tissue data)

Water Quality Stations (series of maps) with summary explanations

 May also want to consider a table or series of tables documenting existing monitoring data for each station broken out by year/media

Characterization of selenium data for Lake Koocanusa aquatic communities (biological tissues)

- Fish community overview trophic and habitat relationships in Lake Koocanusa
 - Historic Fisheries and Tissue Data (pre-2014?)
 - Overview of fish tissue data collection over timeframe for data considered in model
 - Temporal/spatial species-specific statistical comparisons for fish tissue(s)
- Invertebrate Communities
 - Zooplankton
 - Macroinvertebrates
 - Overview of fish tissue data collection over timeframe for data considered in model
 - Temporal and spatial statistical comparisons for invertebrates
- Algal Community
 - Phytoplankton

- Detritus/sediment (need separate characterization?)
- Temporal and spatial statistical comparisons for algae

Characterization of selenium data for water in Lake Koocanusa

- Historic Data (pre-2014?)
- Overview of water data collection over timeframe for data considered in model
- Temporal and spatial statistical comparisons for water
- 2. Laboratory Studies: Characterization of selenium effects on Lake Koocanusa species and surrogates (use/reference effects assessments in 2016 EPA criteria document)
 - Rainbow Trout (also surrogate for kokanee salmon)
 - Dolly Varden (surrogate for Bull Trout)
 - Westslope cutthroat trout (also surrogate for kokanee salmon)
 - Fathead minnow (surrogate for redside shiner, peamouth, and pikeminnow)
 - White sturgeon (target species for downstream protection)
- 3. General definition of the potential analytical approaches
 - Bioaccumulation Modeling
 - Equation
 - Components
 - EF
 - TTF
 - CF
 - Overview of Bioaccumulation Factor (BAF) approach
 - Equation
 - Components
- 4. Target Species Selection use this discussion as a segway between the overview portion and the analysis portion since it is common to both approaches? SeTSC
- 5. BAF
- Available Data
- Critical Decision Points - Se TSC discussion/deliberation/decision (see Critical Decision Points Table)
 - Target species

- Target tissue
- Representative [Se] in water
- Model Validation?
- Scenario Development Process
 - Derivation and temporal-spatial integration of BAFs
- 6. Bioaccumulation Modeling
 - Available Data Koocanusa Database
 - Critical Decision Points Se TSC discussion/deliberation/decision (see Critical Decision Points Table)
 - Target Species either in Section 3 or here
 - Enrichment factor (EF or K_d) -
 - Trophic Transfer Factors (TTF)
 - Conversion Factors (CF) if necessary
 - Model Validation
 - Scenario Development Process Se TSC discussion/deliberation/decision
 - Derivation and temporal-spatial integration of $K_{d}s$
 - Derivation and integration of composite TTFs
 - Derivation of site specific EFs
 - Modeling scenario(s)
- 7. Presentation of Scenario Options
 - BAF based option(s)
 - Option 1
 - Option 2
 - Bioaccumulation Model based option(s)
 - Option 1
 - Option 2
- 8. Uncertainty Analysis
 - BAF

- Bioaccumulation Model